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Abstract. The charging capacitor is used as a standard iganddr illustrating
the concept of the Maxwell “displacement currer’.certain aspect of the
problem, however, is often overlooked. It conceghgsconditions for satisfaction
of the Faraday-Henry law both in the interior andhe exterior of the capacitor.
In this article the situation is analyzed and aursiwe process is described for
obtaining (at least approximate) solutions of Malkwequations inside and out-
side the capacitor.

1. Introduction

The charging capacitor is used as a standard ganaftir demonstrating the signifi-
cance of the Maxwell “displacement current” (seg,,d1-7]). The point is correctly
made that, without this “current” term the statimpere’s law would be incomplete
with regard to explaining the conservation of cleaag well as the existence of elec-
tromagnetic radiation. Furthermore, the line inéégf the magnetic field around a
closed curve would be an ill-defined concept (sppehdix Il).

A certain aspect of the problem, howeverften overlooked in the educational
literature. It concerns the satisfaction of theaédar-Henry law both inside and out-
side the capacitor. Indeed, although care is tateansure that the expressions used
for the electromagnetic (e/m) field satisfy the AsrggMaxwell law, no such care is
exercised with regard to the Faraday-Henry lawitAsrns out, the usual formulas for
the e/m field satisfy this latter law only in theesial case where the capacitor is being
charged at a constant rate. But, if the currergamsible for charging the capacitor is
time-dependent, this will also be the case withrttegnetic field outside the capaci-
tor. This, in turn, implies the existence of andliced” electric field in that region,
contrary to the usual assertion that the elecigetd foutside the capacitor is zero.
Moreover, the time dependence of the magnetic freddle the capacitor is not com-
patible with the assumption that the electric fieldhat region is uniform, as the case
would be in a static situation. Thus, the exprassiosually given in the literature for
the e/m field inside and outside a charging capadtl to satisfy the Faraday-Henry
law in the case of a time-dependent current.

In this article we describe a method for iimgdexpressions for the e/m field that
properly satisfy the full set of Maxwell’'s equats(including, of course, the Faraday-
Henry law) both inside and outside the capacittvese solutions depend on two sca-
lar functions of space and time, which functionss§aa certain system of partial dif-
ferential equations (PDESs). The time-dependentoctrthat charges the capacitor ap-
pears as a sort of parametric function in thisesyst

We suggest a mathematical process for obigirsolutions of the above-
mentioned system of PDEs in the form of power sengh respect to time. This al-
lows one to find approximate expressions for thre 8éld in certain situations. For
example, a slowly varying (thus almost time-indeget) current allows for the

" This article extends the results of the publisheitle [9].



C.J. PAPACHRISTOU

“classical” (albeit incorrect in precise terms)wgans given in the literature, while a
current that is almost linearly dependent on tiae rhay be assumed, in general, for
any smoothly varying current in a very short tinexipd) allows for new solutions
that correct the standard expressions for theredefogld while retaining the corre-
sponding expressions for the magnetic field.

2. Solutions of Maxwell’s equations inside the gacitor

We consider a parallel-plate capacitor with circydéates of radius, thus of area
A=ra’. The space in between the plates is assumedempty of matter. The capaci-
tor is being charged by a time-dependent curi@gnhflowing in the+z direction (see
Fig. 1). Thez-axis is perpendicular to the plates (the lattertlaeeefore parallel to the
xy-plane) and passes through their centers, as seha figure (byl, we denote the

unit vector in thetz direction).

(el

-Q +Q

Figure 1

The capacitor is being charged at a d@yt=I(t), where+Q(t) is the charge on
the right plate (as seen in the figure) at timé o(t)=Q(t)/za’=Q(t)/A is the surface
charge density on the right plate, then the timéevdeve of o is given by

o'(t) = % = LAU (1)

We assume that the plate separation is yeall compared to the radias so that
the e/m field inside the capacitor is practicaligependent of, although itdoesde-
pend on the normal distanpefrom thez-axis. In cylindrical coordinate (¢, 2) the
magnitude of the e/m field at any tinhevill thus only depend op (due to the sym-
metry of the problem, this magnitude will not degp@m the angle).

We assume that the positive and the negatate of the capacitor of Fig. 1 are
centered ar=0 andz=d, respectively, on the-axis, where, as mentioned above, the
plate separatiod is much smaller than the radiasof the plates. The interior of the
capacitor is then the region of space withp <a and 0<z<d.

The magnetic field inside the capacitor israzhal, of the formB = B(p, 1) q/, A

standard practice in the literature is to assurat #t allt, the electric field in this re-
gion is uniform, of the form

e-2W g @)
&o

while everywhere outside the capacitor the eledigicl vanishes. With this assump-
tion the magnetic field inside the capacitor isifduo be [2,3,6]
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Expressions (2) and (3) must, of coursesBathe Maxwell system of equations
in empty space, which system we write in the foind]

(@) V-E=0 © W”E:_z_'?
. (4)
. . oE
B) V-B=0 () VxBocouy o

By using cylindrical coordinates (see Appendixnyay taking (1) into account, one
may show that (2) and (3) satisfy three of Eqs.rfdnely, &), (b) and ¢l). This is not
the case with the Faraday-Henry lave)(dowever, since by (2) and (3) we find that

VxE =0, while

B _ml't)p 4
ot 2A 7

An exception occurs if the currehis constant in time, i.e., if the capacitor isrggi
charged at a constant rate, so tHé&)=0. This is actually the assumption silently or
explicitly made in many textbooks (see, e.g., Rhap. 21). But, for a currert)
with arbitrary time dependence, the pair of figf@sand (3) does not satisfy the third
Maxwell equation.

To remedy the situation and restore the itgliof the full set of Maxwell’'s equa-
tions in the interior of the capacitor, we must stww correct the above expressions
for the e/m field. To this end we employ the follogy Ansatz taking into account
Lemma 1 in Appendix III:

E=[ﬂ+ f(p,t)j g, |

)
B (ﬂo'(t)/?

T g(p.t)j 0, ®)

o'(t) =1 (t) /A

wheref (p,t) andg(p,t) are functions to be determined consistently whih given cur-
rent functionl(t) and the given initial conditions. It can be chedtkhat the solutions
(5) automatically satisfy the first two Maxwell exjions (4) and (4). By the Fara-
day-Henry law (4) and the Ampére-Maxwell law @ we get the following system of
PDEs:
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Note in particular that the “classical” solutiontiwi (p,t)=0 andg(p,t)=0 is possible
only if 1'(t)=0, i.e., if the current is constant in time, which means that the capacito
is being charged at a constant rate.

The quantity (b)o(pg)/dp in the second equation, having its origin at tkeres-
sion for Vx B in cylindrical coordinates, must tend to a firlitait for p)—0 in order
that therot of the magnetic field be finite at the centerlud tapacitor. For this to be
the cased(pg)/op must only contain terms of at least first ordep.his, in turn, re-
quires thag itself must be of at least first order (i.e., Bnevith no constant term) jm
for all t, or elseg must be identically zero. We must, therefore, megthat

g(p,t) > 0 for p—0 (7)

for all t. Keeping this condition in mind, we can rewrite thystem (6) in a more
symmetric form:

of _og  wl't)p

op ot 2A

2(p9) _ d(pf)
—6/) = &oko ot

(8)

In principle, one needs to solve the syst&nfgr a given current(t) and for
given initial conditions. An alternative approatdading to approximate solutions of
various forms, is to expand all functions (ifeg andl) in powers of timet. We thus
write:

1) =Y1,t" ®
n=0
f(p.)=3 fu ()" ©
n=0
ap)=3 g.(p) t ©
n=0

Then, for example,
| '(t) = anntn_l = Z(n +1)| n+1tn , etc.
n=1 n=0

Obviously, |, has dimensions of curregt(time)™, while f, andg, have dimensions of
field intensity (electric and magnetic, respectjyed (time)™.
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Substituting the series expansions (9) ih@ system (8), and equating coeffi-
cients of similar powers dfon both sides of the ensuing equations, we getasion
relation in the form of a system of PDEs:

fn' (,0) = (n+1)|:gn+1(p)+lL;L: Iﬂ+1:|

(10)
[29,(0)] = (N+1)eottop T a(0)

for n=0,1,2,... All non-vanishing functiorng,(p) are required to satisfy the boundary
condition (7); i.e.gn(p)—0 for p—0.

An obvious solution of the system (10) is theial solutionf,(»)=0 andg.(p)=0
for all n=0,1,2,..., corresponding fp,t)=0 andg(p,t)=0. For this to be the case, we
must havd.;=0 for all n=0,1,2,..., which means tht)=I ;=constant (independent
of t). This is the case typically treated in the litara, although the conditidrconst.
is usually not stated explicitly.

The simplest nontrivial solution of the pretnl is found by assuming thiaandg
are time-independent, i.e., are functiong ainly. Then, by (B) and (), f=fo(p) and
9=0go(p), whilef,(»)=0 andgy(p)=0 for n>0. The system (10) far=0 gives

,Uo 1,0

fo (p) = and [pg, (o) = O

with solutions

,Uo 1,0

() =22 and gy(p) =2,
o)

respectively. The boundary conditiga(p)—0 for p—0 cannot be satisfied fde0;
we are thus compelled to set0. Given thaf(p,t)=fo(p) andg(p,t)=go(p), the solution
of the system (8) is

Hol1p”

f(p,t)= +C, g(p,1)=0 (12)

As is easy to check, by the first of Egs.)(L@ollows thatl,=0 for n>1. Therefore
[(t) is linear int, i.e., is of the form(t)=l¢t+l;t. By assuming the initial condition
[(0)=0, we have thdt=0 and

() =11t (12)

On the other hand, by integrating Eq. (@)it)=I(t)/A, and by assuming that the ca-
pacitor is initially uncharged{0)=0], we get:

2
I

1t
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Finally, by Egs. (5), (11), (12) and (13) #&en field in the interior of the capaci-
tor is

_ [ 1,t? |, p?
E— 1 +ﬂ01,0 Gz'
2¢0A 4A
_ [,t
B:/JOlpO

2A 4

(14)

where we have s&@=0 since, in view of the assumed initial conditiotigre is no
electric field inside the capacitorlif=0. In order for the solution (14) to be valid, the
currentl(t) charging the capacitor must vary linearly witinei, according to (12).

3. Solutions of Maxwell’s equations outside theapacitor

We recall that the positive and the negative ptdtéhe capacitor of Fig. 1 are cen-
tered az=0 andz=d, respectively, on the-axis, where the plate separatiis much
smaller than the radiws of the plates. The space exterior to the capaciiosists of
points withp >0 and z¢(0,d ), as well as points witlhh >a and 0<z<d. (In the for-
mer case we exclude points on thaxis, withp=0, to ensure the finiteness of our
solutions in that region.) We assume that the otnrg) is of “infinite” extent and
hence the magnitude of the e/m field is practicaitydependent.

The e/m field outside the capacitor is usudikscribed mathematically by the
equations [2,3,6]

E:O, B: ﬂOI(t)
2np

0, (15)

As the case is with the standard solutions in miberior of the capacitor, the solutions
(15) fail to satisfy the Faraday-Henry lawc)4although they do satisfy the remaining

three Maxwell equations), sindéx E =0 while

B ul'(t) -
—=——Uu, .
ot  2mp 7

As before, an exception occurs if the currerst constant in time, i.e., if the capacitor
is being charged at a constant rate, soltiiigt0.

To find more general solutions that satisky éntire set of the Maxwell equations,
we work as in the previous section. Taking intocact Lemma 2 in Appendix I, we
assume the following general form of the e/m fiel@rywhere outside the capacitor:

= f(p, )0, ,
:(,uol(t)+9( ]Uw (16)
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wheref andg are functions to be determined consistently whh given current func-
tion I(t). The solutions (16) automatically satisfy thetfitwo Maxwell equations &}
and (d). By Eqgs. (4) and (4l) we get the following system of PDEs:

ot _og . ml')

5 ot 27p

(p9) _ d(pf)
—6/) = 50/10—6,[

(17)

Again, the usual solution with(p,t)=0 andg(p,t)=0 is possible only if '(t)=0, i.e., if
the capacitor is being charged at a constant K& also that, since nop0, the
boundary condition (7) fag no longer applies.

As we did in the previous section, we sederes solution of the system (17) in
powers oft. We thus expant] g andl as in Egs. (9), substitute the expansions into the
system (17), and compare terms with equal powetsTdie result is a new recursive
system of PDEs:

fy (p) = (n+1){gn+1oo)+2f‘—° Iml}
70 (18)

[pgn(p)]' = (n+1)‘901u0p fn+l(p)

for n=0,1,2,... Again, an obvious solution is the trivdalutionf,(»)=0 andg,(p)=0 for
all n=0,1,2,..., corresponding f¢p,t)=0 andg(p,t)=0. This requires thdt.,=0 for all
n=0,1,2,..., so thd{(t)=l ;=constant (independent Of

As in Sec. 2, we seek time-independent swistiforf andg, so thatf=fy(p) and
9=0go(p) while fy(p)=0 andg,(p)=0 for n>0. The system (18) far=0 gives

1:o’ (p)=

UL and [pg, ) = O

OI
27p
with solutions

fo(p) =

|
ol 1n(gp) and gy(p) == ,
2r 27p

respectively (remember that0), wherex is a positive constant quantity having di-
mensions of inverse length, and where a factorrdfi& been put igo(p) for future
convenience. Given thdfp,t)=fo(p) andg(p,t)=go(p), the solution of the system (17)
IS

|
(o) =222 n(wp) g(p,t)=2ﬂip (19)

By the first of Egs. (18) it follows thi=0 for n>1. Thereford(t) is linear int, of
the forml(t)=I o+l1t. By assuming the initial conditidi§0)=0, we have thdt=0 and
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() =11t (20)

In view of the above results, the e/m field (16)he exterior of the capacitor is

Loly

E-= In(xp) G,
7T
(21)
_ [t+A
B= 'uOl— u
2rp 7

For this solution to be valid, the currd(t) must vary linearly with time.

By comparing Egs. (14) and (21) we obsenat the value of the electric field
inside the capacitor does not match the valueisffibld outside fop=a, wherea is
the radius of the capacitor. This discontinuitytloé electric field at the boundary of
the space occupied by the capacitor is a typicalatteristic of capacitor problems, in
general. On the other hand, in order that the magfield in the strip < z< d be

continuous fop=a, the expression foB in (21) must match the corresponding ex-
pression in (14) upon substitutipga and by taking into account thAtza®. This
requires that we sét0 in (21), so that this equation finally becomes

Holy

E= In(xp) G, ,
T t (22)
B Hola 0
2np *

4. Discussion

As we have seen, expressions for the e/m fieldiénand outside a charging capacitor
may be sought in the general form given by Egsafk) (16), respectively. These ex-
pressions contain two unknown functioffs,t) and g(p,t) which, in view of Max-
well's equations, satisfy the systems of PDEs () @7). These PDEs, in turn, admit
series solutions in powers pfof the form (9), where it is assumed that theami (t)
itself may be expanded in this fashion.

The coefficients of expansion dfand g may be determined, in principle, by
means of the recursion relations (10) and (18} bbwhich are of the general form

fy () = (N+D)[ Goa (0)+ 1) 1,4]

, (23)

[pgn(p)] = (n"'l)goﬂop fn+l(p)
This is not an easy system to integrate, so weamgelled to make certaed hoc
assumptions. Suppose, e.g., that we seek a sokuign thaf,(p)=0 andgs(p)=0 for
n>k (k>0). It then follows from the first of Eqgs. (23) thia.;=0 for n>k or, equiva-
lently, 1,=0 for n>k+1. Thus, ifk=0, I(t) must be linear in; if k=1, I(t) must be quad-
ratic int; etc.

For a current varying sufficiently slowly witime, we may approximately assume
that 1,=0 for n>0, so thatl(t)=l,=const This allows for the possibility thdtandg
vanish identically, as is effectively assumed (tifounot always stated explicitly) in
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the literature. On the other hand, any smoothlyiagrl(t) may be assumed to vary
linearly with time for a very short time period. gy a solution of the form (14) and
(22) is admissible.

There are several aspects of the solutiossribed by Egs. (14) and (22) that may
look unphysical: &) the electric field in (22) apparently diverges fo>«; (b) the
magnetic field in both (14) and (22) diverges te¥x; (c) although, by assumption,
there are no charges at the interface betweemtbear and the exterior of the ca-
pacitor (i.e., on the cylindrical surface defingddxz<d andp=a) the electric field is
non-continuous on that surface, contrary to theeggrboundary conditions required
by Maxwell's equations;d) the constank in (22) appears to be arbitrary. We may
thus use the above solutions only as approximags tor values op not much larger
than the radiua of the plates, as well as for short time interv@iiote thap has to be
much smaller than the length of the wire that cearipe capacitor if this wire is to be
considered of “infinite” length, hence if the extal e/m field is to be regarded as
independent.) We may smoothen the discontinuitylera of the electric field for
p=a by assuming that this field is continuoust=0, i.e., at the moment when the
charging of the capacitor begins. By settirg in (14) and (22) and by equating the
corresponding expressions farwe may then determine the value of the constamt
(22). The result isk=e'a.

For an enlightening discussion of the suigttetoncerning the e/m field produced
by an infinitely long straight current, the readereferred to Example 7.9 of [1].
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Appendix |. Vector operators in cylindrical coordinates

Let A be a vector field, expressed in cylindrical copadés 4, ¢, z) as

A=A(p.0. 21U+ Alp.0, 3Yy+ Npo.w, I'L.

Thediv and therot of this field in this system of coordinates arétt@n, respectively,
as follows:

- 0
VA:li(ij)+iﬁ+% ,
p op

p Oop 0z
Vx Ao LA A, (OB AN, (1[0 Ay OB |;
v A_(pﬁgo 6Zju”+[8z 8pj%+p(8p(ppé’) 6¢jq'

In particular, if the vector field is of the form
A=A (P)T,+ AP T,

then V-A=0.
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Appendix Il. Charging capacitor: The “textbook” ap proach

When writing the Ampére-Maxwell law in its integifakm, one must carefully define
the concept of theotal current through a loop @Qwhere by “loop” we mean a closed
curve in space).

Proposition.Consider a regioR of space within which the distribution of charge,
expressed by the volume charge density, is timepaddent. LeC be an oriented
loop inR, and letS be any open surface Ribordered byC and oriented accordingly.

We define the total current throughas the surface integral of the current dengity
oversS:

lin =ISJ -da (A1)

Then, the quantity, has a well-defined value independent of the palgrcchoice of
S(that is,liy is the same for all open surfac@sounded byC).

Proof. By the equation of continuity for the electric o@ (see, e.g., [8], Chap. 6)
and by the fact that the charge density insiderdggon R is static, we have that

V-J =0. Therefore, within this region of space the cur@ensity has the properties

of a solenoidal field. In particular, the valuetb& surface integral of will be the
same for all open surfac&sharing a common bord€x

As an example, let us consider a circuitytag a time-dependent currelft). If
the circuit does not contain a capacitor, no chasgeiling up at any point and the
charge density at any elementary segment of tleaitis constant in time. Moreover,
at each instant, the currentl is constant along the circuit, its value changomdy
with time. Now, ifC is a loop encircling some section the circuitshewn in Fig. 2,
then, at each instaftthe same currertt) will pass through any open surfagéor-
dered byC. Thus, the integral in (A.1) is well defined fdi § assuming the same
valuelin=I (t) for all S

Figure 2

Things change if the circuit contains a c#pacthat is charging or discharging. It
is then no longer true that the curréft} is constant along the circuit; indeég) is
zero inside the capacitor and nonzero outside. ,Tthesvalue of the integral in (A.1)
depends on whether the surf&&does or does not contain points belonging torhe i
terior of the capacitor.

Figure 3 shows a simple circuit containingapacitor that is being charged by a
time-dependent currehit). At timet, the plates of the capacitor, each of akeearry
chargestQ(t).

10
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Figure 3

Assume that we encircle the currkby an imaginary plane lodp parallel to the
positive plate and oriented in accordance with“tight-hand rule”, consistently with
the direction ofl (this direction is indicated by the unit vectdarn. The “current
throughC” is here an ill-defined notion since the valuetlodé integral in Eq. (A.1) is
lin=I for the flat surfaces; andli,=0 for the curved surfac®. This, in turn, implies
that Ampere’s law of magnetostatics [1-4,8] canpetvalid in this case, given that,
according to this law, the integral of the magnétt B along the loofC, equal to
tolin , would not be uniquely defined but would dependtanchoice of the surfack
bounded byC.

Maxwell restored the single-valuedness ofdlosed line integral oB by intro-
ducing the so-calledisplacement currentvhich is essentially the rate of change of a
time-dependent electric field:

The Ampere-Maxwell laweads:

OE
Jr5oﬂoa

il

VxB =y,
(A.3)

_ 0E —
C_]SC B-dl =l + 50/10_[85' da= uo(1+14)i

wherelj, is given by Eq. (A.1).

Now, the standard “textbook” approach to ¢harging capacitor problem goes as
follows: Outside the capacitor the electric fielahishes everywhere, while inside the
capacitor the electric field is uniform — albeiing8-dependent — and has the static-
field-like form

g_o® 4 _ QM 4 (A.4)
& A

11
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whereo(t)=Q(t)/A is the surface charge density on the positiveepddittimet. This
density is related to the currdrnthat charges the capacitor by

Q(t) _ I(t)
(t)—— A (A.5)

(the prime indicates differentiation with respext)t Thus, inside the capacitor,

8E a(t) 0]
ot & 50

~

v (A.6)

>

Outside the capacitor the time derivative of thextic field vanishes everywhere and,
therefore, so does the displacement current.

Now, on the flat surfac® the total current throug@ is (+I g)in = 1+0=I(t). The
Ampere-Maxwell law (A.3) then yields:

Lﬁaz%un (A.7)

On the curved surfac® the total current throug@ is (I+1 q)in= O+ gjn = lgjn , Where
the gquantity on the right assumes a nonzero vatle for the portionS,” of S that
lies inside the capacitor. This quantity is eqoal t

—

lgin = 5'[ 88_E I(t)j (A.8)

da K plate of areaA

(side view)
Figure 4

The dot product in the integral on the right of §Arepresents the projection of the

surface elementla onto the axis defined by the unit vectdr(see Fig. 4). This is
equal to the projectioda, of an elementary arada of ;" onto the flat surface of the
plate of the capacitor. Eventually, the integraltba right of (A.8) equals the total
areaA of the plate. Hencegy,=I (t) and, given thak,=0 onS;, the Ampere-Maxwell

law (A.3) again yields the result (A.7).

So, everything works fine with regard to #epére-Maxwell law, but there is
one law we have not taken into account so far; mgniee Faraday-Henry law Ac-
cording to that law, a time-changing magnetic fisl@lways accompanied by an elec-
tric field (or, as is often said, “induces” an etecfield). So, the electric field outside

12



MAXWELL EQUATIONS FOR A CHARGING CAPACITOR

the capacitor cannot be zero, as claimed previpgslyen that the time-dependent
currentl(t) is expected to generate a time-dependent magdiedtic For a similar rea-
son, the electric field inside the capacitor cartmete the static-field-like form (A.4)
(there must also be a contribution from the ratelange of the magnetic field be-
tween the plates).

An exception occurs if the currdnthat charges the capacitor is constant in time
(i.e., if the capacitor is being charged at a camistate) since in this case the magnetic
field will be static everywhere. But, in the gerlerase wheré(t)=constant, the pre-
ceding discussion regarding the charging capapitoiolem needs to be revised in or-
der to take into account the entire set of Maxwe#ijuations; in particular, the Am-
pere-Maxwell law as well as the Faraday-Henry law.

Appendix Ill. General form of the electric field
To justify the general expression for the elediatd implied in theAnsatz(5) used to
find solutions of Maxwell’s equations inside thepaaitor, we need to prove the fol-
lowing:
Lemma 1If the magnetic field inside the capacitor is azihal, of the form

B=B(p,1)0, (A.9)

then the electric field (also assumed dependeptanmtt) is of the form

E=E(p, ) (A.10)
Proof. Let
E=E(p.00,+E(0. 04+ E( )Y (A11)

Then (cf. Appendix I) from Gauss’ lawd}it follows that

i(pEp)=0 = E, _a) (A.12)
op p

In order for the electric field to be finite at thenter of the capacitor (i.e., fpr0)
we must sew(t)=0, so thatE,(p,t)=0. On the other hand, treecomponent of Fara-
day’s law (&) yields

9 _ _AM
5 (0E,)=0 = E, = . (A.13)

Again, finiteness of the electric field fpr0 dictates thap(t)=0, so thatE,(p,t)=0.

Eventually, only the-component of the electric field is non-vanishingaccordance
with (A.10).
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The solutions outside the capacitor are suligethe restrictiop>0. The expres-
sion for the electric field implied in thensatz(16) is based on the following observa-
tion:

Lemma 2.If the magnetic field outside the capacitor isnazthal, of the form
(A.9), then the electric field (also assumed depehdnp andt) is again of the form
(A.10).

Proof. Let the electric field be of the form (A.11). ThigEom Gauss’ law (4) and
from thez-component of Faraday’s lawddwe get (A.12) and (A.13), respectively.
On the other hand, from tlpe andp-components of the fourth Maxwell equatioml)4
we find thatoE,/0t=0 andoE,/0t=0, which means that andf are actually constants.
Thus the general form of the electric field outdide capacitor should be

E==0,+=0,+ f(o. )0 .

D ™

@
o
Obviously, the functiorfi(p,t) is related to the time-change of the magnetid &@ad is
expected to vanish if the currdnthat charges the capacitor is constant. If thetiete

field itself is to vanish wheh=constant both constants andf must be zero. Eventu-
ally, the electric field outside the capacitor miostof the general form (A.10).

References

D. J. Griffiths Introduction to Electrodynamig:@@!,th Edition (Pearson, 2013).
R. K. Wangsnes&lectromagnetic Field<2" Edition (Wiley, 1986).

A. ShadowitzThe Electromagnetic FielMcGraw-Hill, 1975).

V. RojanskyElectromagnetic Fields and Wavi3over, 1979).

J. D. JacksonMaxwell’s displacement current revisite&ur. J. Phys. 20
(1999) 495.

6. K. T. McDonald,Magnetic field in a time-dependent capacii®rinceton,
2017).

7. K. T. Selvan,A revisiting of scientific and philosophical perspees on
Maxwell’s displacement currentEEE Antennas and Propagation Magazine,
Vol. 51, No. 3 (2009) 36.

8. C. J. Papachristolntroduction to Electromagnetic Theory and the Rty sf
Conducting SolidéMETA Publishing, 2019),
http://metapublishing.org/index.php/MP/catalog/&@k

9. C. J. Papachristousome remarks on the charging capacipoblem
Advanced Electromagnetics, Vol. 7, No. 2 (2018), Jp-12,
https://www.aemjournal.org/index.php/AEM/articlegwi/694

a s wbdh ke

14



