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Abstract. We discuss nanophotonic structures composed of high-index dielectric
nanoparticles and present several basic approaches for numerical study of their col-
lective optical response. We also provide comparison on the collective optical proper-
ties of dielectric and plasmonic structures, and review experimental demonstrations
of Fano resonances in all-dielectric nanoparticle oligomers.

10.1 Introduction

Recent progress in nanophotonics is often associated with the study of plas-
monic structures that have enabled enhanced near-field effects at the nanoscale
and control over far-field scattering. However, a new branch of nanophotonics
has emerged through the manipulation of strong optically-induced Mie-type
electric and magnetic resonances in dielectric and semiconductor nanoparti-
cles with high refractive index. High-index resonant nanoparticles offer many
advantages over their plasmonic counterparts in terms of reduced dissipative
losses, low heating, and the resonant enhancement of both electric and mag-
netic fields [1-3]. The coexistence of electric and magnetic resonances has also
enabled effective realization of Kerker’s conditions [4] for reflectionless scatter-
ing by using individual dielectric nanoparticles [5-9], a development that sub-
sequently allows various new phenomena for manipulation of directional light
scattering [10-12] and optical nano-antenna applications [13-15]. This Chap-
ter summarizes several basic numerical approaches applied to the analysis of
all-dielectric nanophotonic structures, while also comparing our results with
those of plasmonic structures, and their functionalities. Within this scope, we
put significant emphasis on one particular area has garnered significant atten-
tion in recent years: the study of Fano resonances in nanoparticle oligomers
and cluster structures [16,17]. While the aforementioned directionality of sin-
gle dielectric nanoparticles can be considered as an effect of interference in the
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scattering along particular directions, Fano resonances correspond to a reso-
nant interference in the total scattering of an object. Yet, these two phenomena
will become interdependent if an all-dielectric nanoparticle oligomer were to
exhibit Fano resonances, thereby presenting a new layer to scattering phenom-
ena at the nanoscale. In this regard, Fano interference has been predominantly
described for specific plasmonic oligomers, where a directly-excited super-
radiant mode interferes destructively with an indirectly-excited “dark mode”
(or trapped mode). In essence, the near-field interaction, or hybridization, of
plasmons provides a coupling channel between different resonant subsystems
of a plasmonic nanostructure. This description can then resemble a classical
oscillator model for Fano resonances [18,19], where a driven oscillator is able
to resonantly couple its external driving force into an adjacent oscillator. Yet,
it is less clear how to apply this description when the separation of a collec-
tive system into distinct resonant subsystems is highly ambiguous, or simply
not possible. Further, it was then predicted that Fano resonances should also
occur in all-dielectric symmetric oligomers [63], despite the absence of plas-
mon hybridization between nanoparticles. The formal treatment presented
herein, considers Fano resonances instead from the resonances of the collec-
tive system, i.e. without separation into resonant subsystems. This approach
demonstrates a common mechanism underlying the physics of Fano resonances
in both plasmonic and all-dielectric oligomers, attributing their existence to
the fact that the eigenmodes of collective oligomers are not orthogonal and
that, therefore, they can interfere with each other. This also establishes why
Fano resonances can be realized in completely symmetric oligomers excited by
normal incidence plane waves, without involving additional complexity into
the system.

The structure of the chapter will therefore follow a path from the modelling
of dielectric nanoparticle systems in Section 10.2, into the general model for
collective resonances and Fano resonances using an eigenmode description
for plasmonic and dielectric nanoparticle oligomers in Section 10.3. We then
conclude by reviewing the recent experimental developments in producing
Fano resonances in dielectric nanoparticle oligomers in Section 10.4.

10.2 Modeling All-Dielectric Nanoparticle Systems

10.2.1 Maxwell’s Equations for Nanophotonics

Physically, electromagnetism describes retarded forces between charges. Elec-
tric and magnetic fields are defined as heralds of linear and rotational force
on charges, a basis that has been historically necessary, or at least convenient,
because it corresponds to the way natural materials respond. Indeed, atoms
and other neutral compositions of charged matter dominantly behave as per
electric and magnetic dipoles: oscillating charges and circulating currents. Ma-
terial then arises when defining regions of closely packed electric and magnetic
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dipoles with homogenized volumes of electric and magnetic dipole densities,
two densities which we refer to as permittivity and permeability. Homogeniza-
tion, as such, inherently corresponds to material as found in nature. However,
this macroscopic description need not align with the advent of metamaterials,
nanoantennas, and complex structured media generally [20]. Macroscopic as-
semblies of subwavelength meta-atoms will not necessarily respond to fields as
per linear or rotational movement of charge; the constituent point sources in
such a homogenized material are not necessarily electric or magnetic dipoles.
Even compact arrangements of coupled dipolar nanoparticles can collectively
exhibit higher-order optical behavior on a subwavelength scale [21]. There-
fore, underlying the rapid development of complex nanophotonic structures
is a need to re-evaluate how we understand the optical properties of complex
structured objects and media. The development of all-dielectric nanostruc-
tures is one area of investigation that now demands a detailed understanding
on the limits of complex optical materials. This is ultimately because simple
nanostructures made from a high-index dielectric material are able to exhibit
both electric and magnetic response, including magnetic resonances that are
of similar magnitude or even stronger than the electric dipole resonances of
plasmonic nanoparticles, as is seen in Figure 10.1. This figure also demon-
strates how the reduced material loss of silicon leads to less damping in the
resonances of silicon nanoparticles, thereby producing higher Q-factors when
compared to plasmonic counterparts. Generalization of the electric and mag-
netic single particle response for arbitrary, high refractive index, dielectric
materials also translates this behavior across a large spectrum, owing to the
scaling properties of the resonances with refractive index and nanoparticle
size [3].
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Fig. 10.1. Comparison of the scattering cross-sections of gold, silver and silicon
nanoparticles of the same geometrical sizes: (a) diameter 50 nm, and (b) diameter
150 nm. These results demonstrate that in addition to a new type of resonances
dielectric particles scatter light more efficiently than plasmonic ones for larger sizes.
Produced after A. I. Kuznetsov [22].
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The seemingly small change of having both electric and magnetic dipole
resonances can have dramatic effects on the scattering behavior of single
nanostructures [4,23,24], but also collective nanoparticle clusters [25,26] and
arrays [27-30]. In this Chapter, we address the challenge of understanding
complex dielectric nanostructures firstly in terms of free currents and polar-
ization currents, because they are the underlying physical sources of fields
within any arbitrary system, and thereby encapsulate its complete optical
characteristics. Secondly, we present the dipole model as a practical simplifi-
cation that allows direct investigation of the dominant resonances of compact
nanoparticle systems. This two-model approach is used for understanding the
physics of nanoparticle cluster geometries consisting of high-index dielectric
nanoparticles, and reconciling the simultaneous interplay of electric and mag-
netic fields in these scattering systems. In doing so, we aim to establish a
platform on which nanoscale designs can be reliably manipulated to capital-
ize on the interaction between dielectric nanoparticles and the magnetic field
in light.

10.2.2 Radiation by Internal Current Distributions

We begin our scattering analysis of linear optical systems by acknowledging
that any arbitrary time-varying electric and magnetic fields can be described
as a distribution of harmonic fields in a Fourier series representation. Further-
more, for monochromatic response, there is no particular need to recognize
the distinction between free current and polarization current, given conduc-
tivity & and susceptibility ¥ can be incorporated into an effective permittivity
€ that relates electric field E to a total electric current J.

e= (Y + 1)eo — % = J(r)e ™ = —iw(e(r) — )E(r)e ™" (10.1)
There is also the simplification that most optical materials have a negligible
difference in permeability compared to their respective background medium,
allowing us to neglect the radiation from any magnetization current. As such,
the field Eg scattered from an arbitrary structure can be described by radiation
from a distribution of electric current, and can be expressed in terms of dyadic
Green’s functions [31].

3 (10.2)

Es(r) = Z.“']/1/0/ @0(1‘, I‘/)J(I‘/) dr

v
where k is the wavenumber, w is the angular frequency, ¢y and po are the
permittivity and permeability of the background medium, and V' is the volume
of the scattering object, which we assume here to be finite. The remaining part
of the expression is the free space dyadic Green’s function Gy:
etkR _ 5(1‘ _ I‘/)
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Go(r, ') =P.V. (I + %VV) (10.3)



10 All-dielectric Nanophotonic Structures 5

where R = |r — r/|, the P.V. implies a principal value exclusion of r’ = r when
performing the integration in Equations 10.1 and 10.4, and L is the source
dyadic necessary to account for the shape of this exclusion [31]. Notably, we
can then use this expression for the scattered field to find the current induced
by an external electric field Eq. In particular, using Equation 10.1, the current
can found from the total interal field E = Eg + Eg, producing the following
relation between the induced field and the external field:

2
—iw(&(r) — ) Eo(r) =J(r) — ]:—(E(r) — o) / Golr,r)I(') A’ (10.4)
0 v

As such, Equation 10.4 and Equation 10.2 will completely describe the cur-
rents induced and fields radiated, respectively, by any arbitrary finite struc-
ture in the absence of magnetization. This is a comprehensive description of
general scattering systems, and is therefore useful for finding broad analyti-
cal conclusions as a result of geometry. Below, we will use it to discuss the
relation between far-field interference features and the nonorthogonality of
eigenmodes for the induced current. It is, however, highly nontrivial to ob-
tain a general, excitation-independent, modal solution for Equation 10.4 for
even very simple geometries, plainly because the model inherently describes
the complete dynamics of a given object’s scattering, encapsulating all reso-
nances, irrespective of their magnitude. One existing numerical approach for
calculating the general scattering properties of any arbitrary object from the
resonances of surface current distributions is implemented through the Open-
Modes software, which deals with complexity by searching for only a subset
of the complex frequency resonances [32]. Here, however, we will focus on
arrangements of simple nanoparticles, so-called oligomers, which utilize the
coupling between nanoparticles, rather than nanoparticle geometry, to pro-
duce complex optical features such as Fano resonances [25,33] and near-field
control [34,35]. For these nanoparticle oligomers, we are able to restrict our
analysis to the dominant optical properties of the collective geometry by only
considering the dominant optical response of the individual nanoparticles. In
particular, the model that will be used extensively throughout the remainder
of this Chapter is to consider only the dipole-order responses of individual
nanoparticles. As we will show, this approach suffers from only minor limita-
tions in accuracy while offering dramatic simplifications in modal analysis.

10.2.3 Dipole Models

The constituent nanoparticles of oligomers are, in general, of simple geome-
try and subwavelength in size, which implies that their individual optical re-
sponses can be entirely described in terms of resonant dipole moments [1,36].
We will begin in the simpler case of plasmonic nanoparticles, where the in-
dividual nanoparticle response is dominantly an electric dipole, and we can
therefore use the dipole approximation [37] to describe the optical properties
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of the oligomer. In particular, each nanoparticle’s electric dipole moment (p;)
is related to the externally-applied electric field (Eq) as:

pi = aJ(E)eOEO (ri) + ap ()2 ZGO ri,r;) (10.5)
J#i

Here, ap,; is the electric dipole polarizability of the ith particle and we can
write the effect of Gy more explicitly as:

et R i 1 3i
Go(r'r) P =g [(1 YRR k2R2) P (1 YRR k2R2)(“ P) } (10.6)

where n is the unit vector pointing from r to r’. The expression in Equa-
tion 10.5 forms a matrix equation of rank 3N, where N is the number of
dipoles, and it can be solved for an arbitrary excitation as per an ordinary
matrix equation. In Figure 10.2a, we present the validity of this model for a
symmetric trimer arrangement of gold nanospheres, where the electric dipole
polarizabilities of the nanospheres are calculated through a; scattering co-
efficients from Mie theory [38,39], c.f. Equation 10.7. Even with very small
gaps between the spheres, the dipole model offers an accurate prediction of
the trimer’s response, with the exception of that coming from the single par-
ticle electric quadrupole response. However, the situation becomes notably
different when we utilize high-index dielectric nanoparticles. Simple dielectric
nanospheres will also exhibit a magnetic dipole resonance in addition to an
electric dipole resonance. Indeed, we can express the electric and magnetic
dipole polarizabilities in terms of the a; and by scattering coefficients, which
are known from Mie theory for the case of spheres [38,39].

6imay _ bimhy

g T s
To this end, the dipole model in Equation 10.5 can then be extended to include
both electric and magnetic dipoles [36]

Qp =

(10.7)

p¥ = oz( eoEo(r;) + oz( 2 (ZGO r,r;) - p¥) — — V x Go(ri,rj) - m(j)>
Jj#i

1’1’1(1) = ag)HO(ri) + Ozg)k'z <ZG0(I‘Z‘, I'j) . m(]) + Co V X Go(ri, I‘j) . p(j))
J#i
(10.8b)

where p( (m;) is the electric (magnetic) dipole moment of the it particle,
Go(rz,r]) is the free space dyadic Green’s function between the i* and 4t

dipole, ozE) (oe( )) is the electric (magnetic) dipole polarizability of the i*! par-

ticle, cg is the speed of light in free-space and k is the free-space wavenumber.
The extra cross-coupling terms are given according to:



10 All-dielectric Nanophotonic Structures 7

Gold Silicon

T T

A =cCsT
osh Dipoles
N
£
= 0.6
c
2
e}
(@] a
| | -
— g = 0nm
x )}
? \_/'/\
0.2:--""""‘ -
single
O"_-l‘-lr'-l/\ I I I
300 400 500 600 700 800 300 400 500 600 700 800
wavelength, nm wavelength, nm

Fig. 10.2. A comparison of the extinction cross-section calculated using CST Mi-
crowave Studio with that calculated using the dipole model in Equation 10.8. Calcu-
lations are for 150 nm nanospheres made of (a) gold and (b) silicon, when arranged
as symmetric trimers with varying separation g between nanoparticles.

B , eikR i
VxGo(r,r)-p—4wR<1+kR>nxp (10.9)
Notably, Equation 10.5 is the discrete equivalent to the continuous current
distribution model in Equation 10.4, and in Equation 10.8 it is extended to
account for magnetization currents in addition to polarization currents. In
other words, the magnetic dipoles introduced into Equation 10.8 behave as
per sources of magnetization current. This description of circulating current
in a nanoparticle is, at least macroscopically, indistinguishable to a source of
true magnetization that derives from material permeability. Indeed, this can
be understood due to the fact that, regarding atoms in natural materials, per-
meability was originally defined to describe circulating currents. This is analo-
gous to circulating polarization current as per Equation 10.1, and a high-index
dielectric nanoparticle remains smaller than the resonant wavelength, even if
much larger than either atoms or molecules. As such, dielectric nanoparticles
allow a straightforward avenue to access effective material properties with
both permittivity and permeability. However, we previously mentioned that
a key advantage of nanostructures is to go beyond conventional materials. In
this regard, we simply need to acknowledge that a single nanoparticle will



8 B. Hopkins, A. E. Miroshnichenko, Y. S. Kivshar

rarely act in isolation: it radiates and couples with other nearby nanoparticles
to form collective modes, and the individual nanoparticles no longer respond
proportionally to the applied electric and magnetic fields as per permittivity
and permeability. In the next section we investigate such collective optical
responses rigorously by presenting an eigenmode approach for describing the
optical responses of coupled nanoparticle scattering systems.

10.3 Eigenmodes of Nanoparticle Oligomers

10.3.1 Resonances, Polarizability, and Eigenmodes

One of the most important properties of nanoscale structures is their reso-
nant response. Thus, it is important to understand conditions of the reso-
nance in order to tailor it toward some given application, be it electric or
magnetic field localization, directionality, chiral resonances, or any number
of other potential applications. In this regard, the majority of quantitative
approaches to characterize a resonance rely on a multipolar decomposition
of a given resonance. There are two approaches to get such a multipolar de-
composition: project the scattered field onto spherical harmonics to obtain a
spherical multipole decompositions, or project the internal current and charge
distributions onto Cartesian multipoles (and their various correction factors)
to obtain a Cartesian multipole decomposition [40-42]. Such decompositions
can then be used to define polarizabilities, or impedances, for each multipolar
dimension [43]. However, these polarizabilities, and the multipolar decompo-
sitions more generally, are inherently dependent on the choice of origin when
performing the decomposition. As such, they ultimately remain a non-unique
basis for the scattering responses, where any given multipole is not necessarily
fully-representative of the given resonance. This can lead to a large number of
multipoles being necessary to describe a single resonance. Furthermore, while
there is an intuitive choice of origin for simple nanostructures, it can be much
less obvious for complex nanostructures or arrangements of nanoparticles,
including nanoparticle oligomers. Equivalently, the multipole decomposition
may simply not align well with the resonances of a given object. These same
issues can impact other existing analytical tools in nanophotonics, such as the
T-matrix method, because it relies on the same spherical multipole decom-
position of scattered fields. Indeed, to understand the resonances of a system
more fundamentally, and in a way that is independent of the choice of origin,
we can instead consider the eigenmodes of the electric current system in the
presence of a driving field. Moreover, Eq. 10.4 has an associated eigenmode
equation, where an eigenmode |v) has a current distribution J, and eigenvalue
A, that satisfies:

13

AT o(r) = — (€(r) — c0) M Tu(r) + - / Go(r. )T, () i (10.10)
€0 v
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These eigenvalues and eigenmodes represent an origin-independent basis of
polarizabilities or impedances, and the associated stable current distributions,
respectively. Furthermore, at any single wavelength, the set of eigenmodes rep-
resents the only basis for the optical response where each basis vector repre-
sents a current distribution that is subject to energy conservation in isolation.
In a mathematical sense, the real component of the eigenvalue must be greater
than zero to satisfy passivity, or must be less than zero to be active (refer to
Equation 10.18), where active means inputting net energy into the system and
passive simply refers to being not active. The final characteristic to recognize
is that the complex frequency where an eigenvalue becomes zero corresponds
to a self-sustaining current distribution, otherwise recognized as a resonance
of the system. In fact, given the eigenmodes will almost always form a com-
plete and linearly-independent basis, every such self-sustaining resonance must
be associated with at least one zero eigenvalue. In summary, the eigenmode
decomposition obtains a complete set of underlying resonances at complex
frequencies, while also providing the only complete set of necessarily-passive
basis vectors at real frequencies, and further connecting these two physical at-
tributes together in a consistent and origin-independent modal framework. A
basis of eigenmodes thereby provides both mathematical and physical insight
into the underlying optical response of any finite scattering system. As we
will address in the next section, there is an added significance that the cur-
rent model here contains loss and is thereby generally non-Hermitian, meaning
eigenmodes need not be orthogonal. However, the specific excitation of each
eigenmode in the current model can still be found through the impact of
reciprocity on the eigenmodes of any arbitrary system. Moreover, Onsager’s
Reciprocity requires that the dyadic Green’s function and permittivity tensor
be symmetric [44], albeit complex and not necessarily Hermitian.

Go(r,r') = Go(r',r), Go=Gl, e=¢&" (10.11)

Due to this symmetry, it is possible to write the overall operator of the eigen-

value equation (Eq. 10.10) as a matrix in the normal form shown by Gant-
macher [45]. This then shows that nondegenerate eigenmodes are orthogonal
under unconjugated projections [46]

/ Jo(r)-Jyu(r) dr* =0, when X\, # )\, (10.12)
Vv

This pseudo-orthogonality of eigenmodes makes the excitation of any eigen-
mode determined through unconjugated dot products between the eigenmode
and a driving field, analogous to the more familiar use of true complex projec-
tions when finding the excitation of orthogonal eigenmodes. As such, despite
eigenmodes being nonorthogonal, any given eigenmode’s excitation is not de-
pendent on the excitations of other eigenmodes: it is determined entirely by
the given eigenmode’s current distribution and the driving field. Turning now
to our consideration of nanoparticle oligomers, this conclusion carries over to
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the eigenmodes of systems made from purely electric dipoles. An eigenmode
|v) having electric dipoles p, will satisfy Eq. 10.5 as:

pff) = ag)eo)\vpg) + ag) Z k:QGO(ri, rj)- pgj) (10.13)
J#i

This relationship between this dipole model and the current distribution
model is not surprising given polarization and current are related as per Equa-
tion 10.1, where free currents are described in terms of polarization current.
Indeed, beyond accounting for the factor of iw and the source dyadic L, the
dipole model is the same as the current model when the current distribution
is described by a countable set of Dirac delta functions.

However, when introducing magnetic dipoles, we are describing the mag-
netic response of dielectric nanoparticles as magnetization. Because of this,
eigenmodes will be simultaneously constructed of both polarization and mag-
netization, where each has different units. To address this difference of units,
an initial approach was to separate the eigenmodes of electric and magnetic
dipoles by introducing a term that describes the driving of electric dipoles by
an applied magnetic field, and the driving of magnetic dipoles by an applied
electric field [21]. In effect, this approach finds the eigenmodes of either the
electric or the magnetic dipole systems, and their polarizabilities (eigenval-
ues), irrespective of the effect they have on the other dipole system. This de-
scription will necessarily have cross terms accounting for interaction between
the electric and magnetic eigenmodes, analogous to tensor bianisotropic polar-
izabilities. However, while this is a full description of the dipole system, and
it provides information on the resonances of electric and magnetic systems
in the presence of each other, it does not describe the simultaneous stable
oscillations of both the electric and magnetic dipoles, which are ultimately
the resonances of the collective system. To consider the eigenmodes and reso-
nances of the collective system, we must consider both electric and magnetic
dipoles together. In this regard, it is necessary to introduce relative scaling
between the electric and magnetic dipoles to maintain fixed units of polar-
izability for the resulting eigenvalues, and to also maintain the passivity of
eigenmodes at real frequencies. Moreover, the magnetic dipoles can be scaled
by a factor of co~!, and the magnetic field by a factor of \/ug/eg. An eigen-
mode |v), having electric dipoles p, and magnetic dipoles m,,, will satisfy the
coupled electric and magnetic dipole model (Equation 10.8) as:

k2 — (% _ 7, kz ~ j ~ — j
Ao bl = (@l e0) Pl - Q(Go(rur]‘) P+ V x Go(ri,r;) - [eg 1mgj)])
(10.14a)

1 (i) N=1p —1_ (i k* - j = i
Aol mi?) = (@ e0) M eg 'mlP) = = (Gorixs) - leg ' ml?) = ¥ x Golriory) - pYY
(10.14b)

)
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This expression describes a matrix equation for eigenmodes of the elec-
tric and magnetic dipole system describing N nanoparticles. The associated
6N x 6N matrix will, notably, not be symmetric when there is non-negligible
coupling between the electric and magnetic dipoles, and therefore the corre-
sponding eigenmodes will not maintain the pseudo-orthogonality analogous
to that in Equation 10.12 for currents. Nonetheless, it worth acknowledging
that this practice of replacing circulating current with magnetization remains
analogous to the practice used to define permeability for conventional ma-
terials. Therefore, the coupled electric and magnetic dipole model, including
its resonances and their associated eigenmodes, should maintain the appro-
priate relationship to magnetic field to be the foundation for our analysis of
all-dielectric nanoparticle oligomers.

10.3.2 Modal Interference and Fano Resonances

We begin by noting that both the current model and the dipole model de-
scribe open, radiative systems. As such, even in the absence of material loss,
the system does still exhibit radiation losses and is generally, therefore, non-
Hermitian. The immediate consequence of this non-Hermicity is that the
eigenmodes we have defined in Equations 10.10, 10.13 and 10.14 are not nec-
essarily orthogonal. To recognize the effect of this nonorthogonality, and its
relation to the Fano resonances, we can refer to the extinction cross-section,
which describes the total loss in a system. To not make any assumptions on
the excitation field, we can construct extinction from the sum of the scattering
and absorption cross-sections. The scattering cross-section can be calculated
from the integral of the far-field scattered power, such as derived by Merchiers
et al. [47] for the case of electric and magnetic dipoles.

k . )
Og 602101m|:Z€OE0 (r@) *Pi + €0[Ll,0H0 (rl> -m,

i
2T . (R
where [ is associated with the average intensity of the excitation such that

it relates the area of a cross-section o to the total power P as per P =

% ﬁ—;’ Ipo. The absorption cross-section can be calculated from the closed

surface integral of the total Poynting vector field around the scattering object,
or by calculating the Ohmic losses of the internal electric and magnetic field
[48].
—k . (TR ) . (KE L _
Oa Imlm {Pi : (7 + (@) 1)Pz‘ + €optom; - (67 + (ag{)) 1>mi}
(10.16)

The extinction cross-section, as the sum of absorption and scattering, can
then be written as:
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k " *
Oe _EOIOIHI|:;E0 (I‘z) - Pi + MoHo (I‘Z) - 1m; (1017)

Notably, this is still the same expression as if we had used the Optical Theorem
with plane wave excitation [47]. The equivalent expression for extinction in
the current model in Equation 10.4, can be found by expressing a current
distribution as an equivalent and infinite distribution of point dipoles [49].

1 Ho * 3
o= 0 E:-Jd 10.1
oe= 1 eoRer : r} (10.18)

s

From this expression, we acknowledge that an arbitrary applied field and
the induced currents can be defined in terms of a linear superposition of the
eigenmodes:

Eo=> aM\d, = J=) ald, (10.19)

We are then able to rewrite the total extinction (Equation 10.18) in terms
of eigenmodes and eigenvalues. Moreover, we can divide the extinction into
two contributions: direct terms that provide contributions to extinction from
individual eigenmodes, and also interference terms coming from the overlap
between different eigenmodes.

— i @ 2 2 3 * * * 3
O = Io\/;; (Re[)\v]/‘;av |Jo|” dr +1UZ¢U Re[avaw)\v/v.]v J,, dr ])

direct terms interference terms

(10.20)

The direct terms are always greater than zero due to the inscribed passivity
of eigenmodes, and interference terms would notably all be zero for orthogonal
eigenmodes. As we will now explain, the existence of nonzero interference
terms, and thereby the presence of nonorthogonal eigenmodes, is required for
Fano resonances to exist. Moreover, a given eigenmode’s excitation, being the
a; coefficients of Equation (10.19), will be independent from the excitations
of other eigenmodes - a conclusion directly from the pseudo-orthogonality in
Equation 10.12. The only way an interaction between two or more eigenmodes
affects the extinction cross-section is, therefore, through interference terms,
meaning that Fano resonances must be described by the nonorthogonality
of eigenmodes. This is indeed the conclusion of earlier works on the Fano
resonances arising in nanoparticle oligomers [21,50], and is in good accordance
with Fano resonances that have been proposed and observed to occur between
modes that are directly driven by the incident field [51,52]. As an example, we
consider heptamers made from gold nanospheres shown in Figure 10.3a. By
performing an eigenmode decomposition of this system, we show the direct
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terms of extinction coming from the dominant eigenmodes, in addition to
the total extinction. This means the difference between total extinction and
the sum of direct terms are the interference terms is coming from eigenmode
overlap. For the case of the gold heptamer, we have a typical scenario of the
Fano resonances: the overlap of a broad resonance and a sharp resonance, and
coupling that leads to destructive interference. This gold heptamer thereby
shows a classical example of a Fano resonance [16], where the interaction
between resonances is coming from eigenmode nonorthogonality.

However, as seen in Figure 10.3b, the situation becomes dramatically more
complicated for a silicon heptamer. The number of eigenmodes of this system
is much higher, because of both the additional magnetic dipoles and because
electric-magnetic dipole coupling (c.f. Equation 10.9) allows each dipole to
be polarized parallel to the propagation direction [53]. The first consequence
of this increased eigenmode count is that there are many more signatures
of interference phenomena occurring across the extinction spectra. However,
the second consequence is that we have to accept the formation of excep-
tional points. An exceptional point refers to a point degeneracy of two or
more eigenvalues when their eigenmodes simultaneously become linearly de-
pendent, subsequently corresponding to a reduction in the dimension of the
span of eigenmodes [54-56]. Exceptional points can exist even in simple plas-
monic and dielectric oligomer systems at complex frequencies [53], but can be
expected to occur more regularly when there are more interacting eigenmodes.
For the discussion here, we need to recognize that the excitation magnitudes
of coalescing eigenmodes can diverge in the vicinity of an exceptional point,
given a component of the driving field is gradually becoming orthogonal to the
eigenmodes that span it. However, a full discussion of the properties of excep-
tional points will not be covered, and we have therefore attempted to divert
attention away from the direct extinction terms of individual eigenmodes that
diverge as they near exceptional points in Figure 10.3b. The reason we observe
such features is likely because the number of eigenmodes that are excited by a
normally-incident plane wave in a dielectric oligomer can be more than dou-
ble that for a plasmonic oligomer. Assuming a normally-incident plane wave,
the number of excitable eigenmodes in such rotationally-symmetric plasmonic
oligomers is relatively contained: two degenerate pairs of eigenmodes for each
ring of nanoparticles and one further pair if there is central nanoparticle [21].
On the other hand, the coupling between electric and magnetic dipoles in
dielectric oligomers removes such eigenmode restrictions, making the number
of excitable eigenmodes increase with the number of nanoparticles in each
ring [53]. This means that even simple arrangements of dielectric nanopar-
ticles can be used to achieve the behavior of more complicated plasmonic
oligomers, an example of which will be investigated in the next section.

Finally, as an addendum, we should recognize that there is a degree of
freedom in how to attribute extinction to each given eigenmode. In particular,
rather than separating direct and interference terms as per Equation 10.20,
Frimmer et al. [51] attributed the extinction associated with a given eigenmode
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Fig. 10.3. (Dashed lines) Extinction spectra of (a) gold and (b) silicon heptamers,
simulated using the dipole model Equation 10.8 and showing the role of eigenmode
interference in producing Fano resonances. (Solid lines) Overlaid direct terms to
extinction, as per Equation 10.20, for all three excited eigenmodes of the gold hep-
tamers, and the six most dominant eigenmodes for the silicon heptamers. The gray
regions correspond to wavelength bands near exceptional points. Both gold and
silicon nanospheres are 150 nm in diameter.

to the projection of this eigenmode onto the complete incident field.

oo = 110\/?22 Re [av(/vEO* 3, i) (10.21)

In this approach, Fano resonances appear as negative extinction from an eigen-
mode [51], as per negative interference terms overpowering the positive di-
rect terms. This decomposition ultimately contains the same interactions and
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nonorthogonality of eigenmodes, however, it is still important to emphasize
the role of modal overlap in producing Fano resonances: the eigenmodes them-
selves are the basis vectors that produce only positive extinction, and negative
extinction only arises from the overlap between eigenmodes. The choice of de-
constructing extinction using Equation 10.20 or 10.21, is effectively a question
of whether or not to separate interference terms.

10.3.3 Eigenmodes of Nanoparticle Dimers

Up until now, the eigenmodes and eigenvalues we obtain have been calcu-
lated purely through numerics and we do not necessarily obtain information
on the importance of geometric or design parameters. Here we will show a
way to calculate the eigenmodes by subdividing the optical response of the
complete structure into a set of constituent responses. In effect, what we will
present resembles a so-called hybridization approach, but one that has been
simplified and tailored for nanoparticle structures by using the electric and
magnetic dipole model in Equations 10.8 and 10.14. Moreover, when consid-
ering relatively simple nanoparticle oligomer structures, it becomes possible
to derive analytical expressions for the eigenmodes. This simplified approach
of deriving the eigenmodes in terms of the constituent parts was introduced
and presented for the case of a nanoparticle trimer [53]. Here, however, we will
consider the more typical case of a nanoparticle dimer. There has been a re-
cent surging interest in silicon nanoparticle dimers, which have been observed
to exhibit behavior such as Fano resonances, directionality and magnetic near-
field enhancement [57-59]. There is also an interest in hybrid dimers consisting
both high-index dielectric nanoparticles and plasmonic nanoparticles, includ-
ing predictions of antiferromagnetic behavior [60]. In any case, the complete
solutions of the eigenmodes and eigenvalues in a symmetric dimer has previ-
ously been calculated analytically by Merchiers et al [47], although the scaling
between electric and magnetic dipoles in Equation 10.14 was not accounted
for. We will instead go further and demonstrate the simplified hybridization
approach for the case of an asymmetric dimer. This will allow us to encom-
pass some of these recent works that utilize asymmetry, but also the case of
a particle on a substrate, where the substrate responds as a virtual image of
the particle. However, to limit complexity, we restrict our analysis to diago-
nal tensor dipole polarizabilities with three primary axes (z, y and z axes),
thereby neglecting both anisotropic and bianisotropic terms.
e
«

(10.22)
O]
E|z
and similarly for a,. We then use matrix notation to denote eigenmodes as
vector concatenations of the associated dipole moments:
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The relative scaling of the electric and magnetic dipole moments, and of the
electric and magnetic applied fields, is again used to define eigenmodes with
consistent units and thereby ensure that the eigenvalues have units. Using the
state notation in Equation 10.23, the eigenmode equation (Equation 10.14)
can be compactly written in terms of both a polarizability operator & and a
Green’s function operator G.

Av) = (oT1 - g) o) (10.24)

This allows us to find simplified matrix versions of the & and G operators
for subsets of eigenmodes that transform according to a single irreducible
representation of the dimer’s symmetry point group. In particular, when con-
sidering the general case of an asymmetric dimer with achiral nanoparticles,
we reduce the set of geometric symmetry operations to those of a Cyj point
group. We can then define basis vectors of the dimer’s optical response to be
the eigenmodes of the G operator in the absence of electric to magnetic dipole
coupling. These basis vectors are those shown in Fig. 10.4, which are named
according to their irreducible representations in the Cyj, point group, but with
an additional subscript x,y, z to distinguish the orientation of each such ba-
sis vector and account for anisotropic nanoparticles as per Equation 10.22.
Notably these basis vectors are more commonly associated with the eigen-
modes of a symmetric dimer, but they are also practical for an asymmetric
dimer because they still form a complete basis for its optical response. More-
over, because they remain eigenmodes of the Green’s function operator in the
absence of electric to magnetic coupling, we only need to consider coupling
channels between basis vectors created by the &' operator, and the channels
due to electric to magnetic coupling. In Fig. 10.4, we use the convention where
a dashed line represents a coupling channel from the dissimilarity of nanopar-
ticles in the &' polarizability operator and an unbroken line represents the
bianisotropic coupling channels in the G Green’s function operator. The mag-
nitudes of these coupling channels can be determined from the polarizabilties
of each nanoparticle, and from the dipole model in Equation 10.8.

1,1 1
—1 _ = - =

Aol = 2(a(1> a(2)> : (10.25)
eikR ) ik

Xp= Xy =X= (k2 + E) (10.26)

We can also define the eigenvalues v of the Green’s function operator inde-
pendently of the polarizability operator.
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Basis vectors and coupling channels in an asymmetric dimer
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Fig. 10.4. Diagram showing the complete set of basis vectors, and the coupling
channels between them, for the optical response of an asymmetric dimer. Individual
nanoparticles are considered to exhibit both electric (red) and magnetic (blue) dipole
moments.

eikR ik 1
- [ 10.2
m 47r60R( + R R2) (10.27)
err ik 1
SR (i ——— 10.2
2 QWGOR(R R2) (10.28)

where R = |r; — rg| is the distance between dipoles. Using this approach, the
operator (& " — G) can be written as a 2 x 2 matrix for each of the A/, and
A basis vectors:

al_g_ L <<"‘1>+E°7 Aot ) (10.29)

€0 Aot (a1 — €py

where:

1/ 1 1
_1 _ = -
Aa™" =3 (au) a(z))

1,1 1
_1 _ = - -
(™) = z(a(l) + a(z))

The particular polarizability and component that « refers to has been left
intentionally vague so we can reuse the notation; the particular values we use
are listed in Tables 10.1 and 10.2.

For the remaining basis vectors of the complete dimer, the bianisotropic cou-
pling channels require a 4 x4 matrix in order to describe the a'-¢ operator.
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Table 10.1. The combinations of basis vectors and polarizabilities that define pairs
of eigenmodes for the Al and A responses, as described by Equation 10.32

(az!) +eom Aoyt €0 X
a1l _G — 1 Aay! (ap') —em —€0 X
€0 €0X (agt) + eom Aaj;t
—€0X Aay! (az') —eom
(10.30)

Here the indices of the polarizabilities are different for the A’ and A” basis
vectors as prescribed in Table 10.2. Given we now have equivalent matrix
expressions for the independent subspaces of the &' — G operator, shown in
Equations 10.29 and 10.30, we can find the dimer’s eigenmodes and eigenvalues
such that they satisfy:

APJvi) = (&7 = G)|wi) (10.31)

In other words, the complete set of eigenmodes can be found from the eigen-
decompositions of 2 x 2 and 4 x 4 matrices. Moreover, for the case of the 2 x 2
matrices for A’ and A! reponse space, the eigenmodes and eigenvalues are of
the form:

o) = (012 £ 8,) 1) = A~ 1) (10.322)
-1
At = <0¢6>7¥5@ (10.32b)
0

H A/ ‘ A//

ap || Ogly | Og|z
Qf || Oz | Oy

X | X | =X

Table 10.2. The combinations of polarizability axes and coupling channel for Equa-
tions 10.35-10.38 that provide the eigenvalues and eigenmodes of the A’ and A"
irreducible representations according to Equation 10.39 and Equations 10.42-10.44
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where the specific values to use for each polarizability a and the basis vectors
|I") are written in Table 10.1, and we have also defined a function § to explicitly
quantify the difference between eigenmodes:

1 1) — q@)\2 2
b= (5 - (0en) o
o\

Equation 10.32 gives general expressions for the eigenmodes and eigenvalues of
the A’ and A reponse spaces. Notably, as per the discussion in Section 10.3.2,
there is an exzceptional point [56] occurring when § = 0; a degeneracy of
eigenvalues combined with a linear dependency of the eigenmodes.

To find the remaining eigenvalues of the dimer, belonging to the &' — G
operator in Equation 10.30, we solve for the roots of the associated charac-
teristic equation. The general form of the characteristic equation for both A’
and A" response spaces will be:

M4+BN4+ON+DAN+E=0 (10.34)

where each coefficient is given by Equations 10.35-10.38.

B=—q' ((a?) + <a§1>) (10.35)
_ _ _ 1 1
C=e 2(<aE1>(aH1) + 5+~ + 260 (X7 - ’yf)) (10.36)
Qp Qg Oy Oy
_ _ 1 _ 1 _ _
D =¢ 3(<0¢E1> [E(QJ’Y% - W] + <05E1> [637% - W] - 6(2)X2 [<a151> + <aH1>])
O Oy A Qg
(10.37)
1 1 1
FE = 6_4( + e2x? [ + ]
RN NN IR ORI N E)
1 1 2
~ i [ ) e D)) (10.38)
AR Qg A Qg

The roots of quartic equations like Equation 10.34 are known for general
coefficients. Indeed, we write the resulting eigenvalues using four different
combinations of plus and minus signs, +,, and =+,
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/ —1iB3 4+ BC -2D
A = 733 + % 3B270+h +0 % %32707}1 +, — +
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(10.39a)

1 1 /3 1
Ao =B &, 5\/ZB2—2C +,, 2Vh?—4E, when ZB2—C+h:0
(10.39b)

where :

1
h=<-(C
3o

p=2C% —9BCD + 27D? + 21B*E — 12CE
q=C?—3BD+12E

{p+ VP — 4q3] e N {p+ Vr® — 4q3} 1/3>
2 2

Using these eigenvalues we can now find the dipole moment profiles of
the eigenmodes themselves. We begin by writing an eigenmode as a linear
combination of the associated A’ and A” basis vectors,

(vy2)

ailAL,) + bilAL,) + el AL,) + i AT (A)

a;|A’ + b; All + ¢ AA/Z2 +d; A/z1 A
>{ ) B AL ALY @)

(¥2) (y1)

We can then write down the relationships between the coefficients of these A’
and A" basis vectors using the coupling channels depicted by Figure 10.4 and
expressed in Equation 10.30.

Xd; = <>\i —afazh + ’Yl)ai — & Aagth; (10.41a)
~Xe = </\i — Liagh) - yl)bi ~ LAaj e (10.41b)
Xb; = ()\i — %(a;” — *yl)ci — éAa;ldi (10.41c)
—Xa; = (/\Z -+ 71) i — = Ay (10.41d)

By substituting between these equations, we can obtain the following expres-
sions for the ratios between coefficients:
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These three ratios are sufficient to produce expressions for each eigenmode
when normalized to b;, a dependence that is removed by simply normalizing
each eigenmode. In Figure 10.5a, we demonstrate that this analytical expres-
sion for the eigenmodes is able to accurately predict the optical extinction of
an asymmetric dimer made from silicon nanospheres. The dimer we consider
also doubles as an example of how electric to magnetic coupling can be uti-
lized, in this case for directional scattering. Moreover, referring to Figure 10.1,
we see that the magnetic dipole resonance of a 150 nm silicon sphere roughly
coincides with the electric resonance of a 200 nm silicon sphere. If we, there-
fore, arrange two such spheres as a dimer, we can utilize the coupling to mix
electric and magnetic resonances of the single particles into collective modes.
The 150 nm silicon sphere’s magnetic dipole resonance is stronger than the
200 nm silicon sphere’s electric dipole resonance. So, with normal incidence
plane wave excitation and magnetic field polarization perpendicular to the
axis of the dimer, we couple the single particle magnetic resonance with the
electric dipoles parallel to propagation direction (c.f. Figure 10.4), allowing
for collective resonances that are averaged between the magnetic and electric
resonances. The coupling can then be controlled by simply adjusting the gap
between the two silicon nanospheres, allowing us to equalize the total electric
and magnetic dipole moments from this collective system to approach the con-
ditions for Huygen’s sources [27] or weak duality symmetry [61,62]. Indeed,
as seen in Figure 10.5b, this approach leads to strong directional scattering,
which is a result of an equality of the total electric and magnetic dipole mo-
ments in this system seen through Figure 10.5¢c. Notably, this approach maxi-
mizes the scattering, as distinct from recent realizations of silicon nanosphere
dimers that produce directional scattering by utilizing Fano resonances, which
minimize scattering [57].
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Fig. 10.5. (a) Calculated extinction spectra for a 150 nm and a 200 nm diameter
silicon nanosphere, and the combined dimer when separated by g = 50 nm, showing
good agreement between CST and the analytical result for eigenmodes and eigen-
values derived in this section. (b) The forward and backward scattered power in 7/6
solid angles of a plane wave with unit amplitude (1 V/m), and (c) the associated
equality of electric and magnetic dipoles in the dimer.

To understand our dimer system further, we provide analysis of its behav-
ior from the perspective of the collective eigenmodes. Indeed, in Figure 10.6,
we see how the previous description of coupling between magnetic dipoles and
electric dipoles parallel to the propagation direction can be related to three
particular eigenmodes. Figure 10.6a shows the individual eigenmode contribu-
tions to extinction, and that the directional scattering at 600 nm wavelength
can be dominantly attributed to the three eigenmodes (i-iii), whose profiles
are depicted in Figure 10.6b. The first two eigenmodes (i and ii) are domi-
nated by the pure electric and magnetic dipole of the 200 nm and 150 nm
nanoparticles, respectively. A third eigenmode (iii) then also contributes to
the magnetic dipole of the 150 nm nanoparticle, while being significantly de-
pendent on electric dipoles aligned parallel to the propagation direction, and
thereby providing the extra degree of freedom to balance the final magnitudes
of the electric and magnetic dipoles in the 200 nm and 150 nm nanoparticles.
The combination of these three eigenmodes then describes the directional scat-
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Fig. 10.6. (a) Eigenmode decomposition of the extinction from the silicon
nanosphere dimer in Figure 10.5a. (b) The electric and magnetic dipole moments of
the three most dominant eigenmodes that contribute towards the extinction peak
at 600 nm.

tering we observed in Figure 10.5b, in a way that is related to the collective
resonances of the nanoparticle dimer. This thereby demonstrates one avenue
by which eigenmodes can be used to gain insight into the collective optical
resonances and operation of dielectric nanoparticle oligomers.

10.3.4 Dimensionless Eigenvalues

The eigenmodes and the eigenvalues we have presented up until now have
been to understand a polarizability relationship between either dipoles or
currents and the driving field. However, in some situations, it may also be
informative to know the eigenmodes of a geometry where there is no driving
field, such as in the transient response to excitation by a pulse of light. These
eigenmodes of the undriven system, having current distributions J ,,, represent
the underlying stable currents or dipole moments of a given structure; they
are the stable oscillations that persist in the given structure when the driving
field is removed. Notably, the associated eigenvalues A, of this situation are
then not polarizabilities, but rather dimensionless values for the self-feedback
strength of the given current or dipole distribution.

AT o(r) = (e(r) — eo)lz—o /V Golr, v )T, (r') d®2’ (10.45)

Comparing this expression to Equation 10.10, we can see that there is no
distinction between eigenmodes with or without a driving field when the given
structure is made up of a homogeneous isotropic material. It is only when
we introduce additional materials into our scattering system that the stable
resonances are changed by the presence of a driving field. However, if we
consider the analogous situation for the dipole model in Equation 10.5, the



24 B. Hopkins, A. E. Miroshnichenko, Y. S. Kivshar

eigenmodes of Equations 10.10 and 10.45 become distinct as soon as there is
more than one single isotropic polarizability for describing all dipoles. As a
consequence, there will generally be a distinction between the two types of
eigenmodes whenever a dipole system consists of both electric and magnetic
dipoles. Moreover, we can consider eigenmodes {P,, M, } of the electric and
magnetic dipole model in Equation 10.8 when there is no driving field.

. . _ . 1 _ .
AU’PS}) :OZ(E?)]{JQ <ZG0(I‘Z'7T]‘) . ‘ng) — ? V X Go(l‘i7rj) . ng)> (1046&)
0

J#i
Aym) =D k? <Z(_§'o(1‘i71‘j) a4 oV x Go(ry,x;) - 7’5?) (10.46b)
J#i

This expression will produce different eigenmodes to that of Equation 10.14,
but it serves to provide different insights into the given scattering system.
Notably, we do not need to scale the electric and magnetic dipoles to have
correct units for the eigenvalue: it now remains unitless for any scaling between
electric and magnetic dipoles.

10.4 Observation of Fano Resonances in Nanoparticle
Oligomers

The study of Fano resonances in plasmonic nanoparticle structures has a long
history, whereas the theoretical predictions [21,63] and experimental demon-
strations [14, 25, 26, 53, 57] of Fano resonances in all-dielectric nanoparticle
oligomers have been reported only recently. In comparison to the oligomers
composed of plasmonic nanoparticles, all-dielectric oligomer structures sup-
port both strong electric and magnetic resonances in the individual constituent
elements and open up a whole new dimension for mutual inter-element cou-
pling and, consequently, for the formation of collective modes. Indeed, it was
recently predicted in theory [21,63] that light scattering by silicon oligomers
should exhibit well-pronounced Fano resonances originating from the predom-
inant excitation of optically-induced magnetic dipole modes in the individual
elements of the oligomer structure.

The Fano resonance is traditionally recognized as arising from the interfer-
ence of broad and narrow spectral lines, yet the concept can be also extended
to encompass the situation of interference between several electric and/or
magnetic modes of comparable spectral width [21]. Importantly, the resulting
asymmetric line-shape of the Fano resonance is still clearly observed in both
theory and experiment since the destructive and constructive interference take
place in a narrow spectral range exhibiting strongly resonant response. The
existence of such Fano resonances in silicon oligomers might offer a range of
novel possibilities for applications, owing to their higher resistance to heat as
compared to optical metal nanostructures and to the possibility of free carrier
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generation in the material. In this regard, Figure 10.7 presents the experi-
mental results for the observation of Fano resonances in heptamer oligomers
composed of Si nanodisks. In particular, Fig. 10.7a shows top view SEM im-
ages of several heptamer structures arranged in two-dimensional arrays with
a lattice constant of 2840 nm. This value has been chosen in order to ensure
that the separation between neighboring structures is large enough for dom-
inant coupling to remain within each oligomer structure, while the in-plane
density of oligomer structures is still sufficiently high to create pronounced
resonances in the far-field spectra. The measurement results of linear-optical
transmittance spectra from four, silicon nanodisk heptamer arrays, with vary-
ing central nanodisk diameter and unpolarized incident light, are presented
in Figure 10.7b. The experimental and theoretical extinction spectra show
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Fig. 10.7. Experimental observation of Fano resonances in Si oligomers. (a) Scan-
ning electron micrographs of heptamer oligomers. (b,c) Extinction spectra for a
variety of silicon nanodisk structures featuring a systematic variation of the cen-
tral nanodisk diameter. Shown are (b) experimentally measured results for arrayed
structures with unpolarized incident light, and (c) theoretically calculated results
for single heptamers for arbitrarily polarized light. A Fano resonance is created in
the heptamers (see gray-shaded region and colored arrows), and it moves across the
spectrum as the diameter of the central particle is varied [25].
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a good qualitative agreement. In both sets of results two distinct extinction
peaks for each spectrum are observed. The peak at longer wavelengths corre-
sponds to the magnetic resonance of the collective structure. The second peak,
which is observed at shorter wavelengths, is associated with the magnetic res-
onance of the central particle. By analyzing the major collective modes of the
oligomer structures corresponding with its dominant resonances, numerical
calculations [25] further unveil the main mechanism of eigenmode interfer-
ence realized in the heptamer structures. This confirms that the observed Fano
resonances indeed originate from interference between the optically-induced
magnetic resonances of the central particles and those of the collective struc-
tures.

Later, Filonov et al. [64] demonstrated the existence of Fano resonances in
all-dielectric oligomer structures in a series of microwave experiments. They
confirmed this result by both far- and near-field measurements, including the
studies of the forward scattering and phase distribution across the structure.
The resonant suppression of the scattering was observed to be accompanied
by a 7 phase jump at the central particle, and this was confirmed by the
modal analysis based on the coupled-dipole approximation, which allows one
to clearly identify the particular supermodes contributing to the resonant
interference phenomena. In addition, the authors observed a unique type of
Fano resonance in hexamer oligomers without a central particle; this type of
Fano resonance originates from the interference of electric-type supermodes,
and it exhibits an asymmetric profile due to the presence of both constructive
and destructive interference phenomena.

Because dielectric nanoparticles enable a different coupling mechanism be-
tween electric and magnetic resonances, Fano resonances can be clearly ob-
served for smaller number of particles such as trimers [53] and quadrumers [26].
In particular, the magnetic field polarized along a symmetric quadrumer’s
principal axis can produce a resonant circulation of field that can couple
to the inherent magnetic response of the individual nanoparticles. The in-
terference between magnetic responses can then be tailored to produce dis-
tinctive and sharp magnetic Fano resonances [26]. This form of optically in-
duced magnetic-magnetic coupling and interference is a unique characteristic
of properly designed dielectric nanoclusters. To verify the theoretical pre-
dictions experimentally, Hopkins et al. [26] studied scattering properties of
MgOTiO4 ceramic spheres characterized by a dielectric constant of 16 mea-
sured at 9-12 GHz. These ceramic spheres in the microwave range therefore
have very similar properties to silicon nanospheres in the optical range, and
they were employed as a useful macroscopic platform on which to prototype
silicon nanostructures. The MgO-TiOs quadrumer consists of four dielectric
spheres with diameter 15 mm, and the size of the gap between the particles is
5 mm. The experimentally measured, and numerically calculated, total scat-
tering of the quadrumer structure is shown in Figure 10.8. It can clearly be
seen that a magnetic Fano resonance is produced at 5.4 GHz in both simula-
tion and experiment. This was the first example of a magnetic-magnetic Fano
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Fig. 10.8. Comparison between theoretical and experimental results for quadrumer
oligomers. (a) Numerical simulation results and (b) experimental measurements of
extinction for a quadrumer made of four MgOTiO2 ceramic spheres. Also shown
is the extinction from a single MgO-TiOs sphere for reference. In both simulation
and experiment the existence of a sharp Fano resonance occurring at 5.4 GHz is
detected [26].

resonance in a single symmetric metamolecule. Notably, this Fano resonance
occurs in a spectral range where the single particle is not at resonance, which
demonstrates its collective nature. Indeed, it appears near the intersection of
the single particle’s electric and magnetic scattering contributions, reflecting
that the overlap of eigenmodes is dependent on both electric and magnetic
dipole polarizabilities. The role of individual electric and magnetic dipoles has
also been considered relating to Fano resonances arising from the interaction
between broad and narrow modes in dimers composed of two different sili-
con nanospheres [57]. The silicon nanosphere dimer exhibits a strong internal
magnetic response, with an electric enhancement in the gap, providing an ex-
cellent structure to support magnetic-based Fano scattering. The interactions
between magnetic and electric dipoles can then suppress backward scattering
and enhance forward scattering at Fano wavelengths. This directional scatter-
ing is much more prominent than that from a single silicon sphere and shows
promising applications in areas such as directional nanoantennas or optical
switching, opening up future avenues for developing all-dielectric nanopho-
tonic devices.

10.5 Concluding Remarks

The study of resonant dielectric and semiconductor nanoparticle structures
has become a new research direction in modern optics and nanophotonics. Due
to their unique optically-induced Mie-type electric and magnetic resonances,
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such high-index dielectric photonic structures are expected to complement or
substitute some of the plasmonic components in a range of potential applica-
tions. The unique low-loss resonant behavior makes it possible to reproduce
many subwavelength resonant effects demonstrated in nanophotonics with-
out much energy dissipation into heat. In addition, the co-existence of strong
electric and magnetic resonances, their interference and resonant enhance-
ment of the magnetic response in dielectric nanoparticles bring new physics
and entirely novel functionalities to simple nanoparticle geometries. This is a
direction that has not been much explored, especially in the nonlinear regime.
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